Study Guide and Intervention 10-4

Radical Equations

Radical Equations Equations containing radicals with variables in the radicand are called **radical equations**. These can be solved by first using the following steps.

Isolate the radical on one side of the equation. Step 1

Step 2 Square each side of the equation to eliminate the radical.

equation.

Exercises

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Solve each equation. Check your solution.

2. \sqrt{a} + 6 = 32 **676 3.** $2\sqrt{x} = 8$ **16 1.** $\sqrt{a} = 8$ **64 6.** $\sqrt{3r^2} = 3 + \sqrt{3}$ **4.** $7 = \sqrt{26 - n}$ **-23 5.** $\sqrt{-a} = 6$ **-36** 8. $2\sqrt{3a} - 2 = 7$ 6 $\frac{3}{4}$ **7.** $2\sqrt{3} = \sqrt{y}$ **12 9.** $\sqrt{x-4} = 6$ **40 11.** $\sqrt{3b-2} + 19 = 24$ **9 12.** $\sqrt{4x-1} = 3\frac{5}{2}$ 10. $\sqrt{2m+3} = 5$ 11 **13.** $\sqrt{3r+2} = 2\sqrt{3} \frac{10}{3}$ **14.** $\sqrt{\frac{x}{2}} = \frac{1}{2} \frac{1}{2}$ 15. $\sqrt{\frac{x}{8}} = 4$ 128 18. $2\sqrt{\frac{3x}{5}} + 3 = 11$ 26 $\frac{2}{3}$ **16.** $\sqrt{6x^2 + 5x} = 2 \frac{1}{2}, -\frac{4}{3}$ **17.** $\sqrt{\frac{x}{3}} + 6 = 8$ **12**

Study Guide and Intervention (continued) 10 - 4

Radical Equations

Extraneous Solutions To solve a radical equation with a variable on both sides, you need to square each side of the equation. Squaring each side of an equation sometimes produces **extraneous solutions**, or solutions that are not solutions of the original equation. Therefore, it is very important that you check each solution.

Example 1 Solve \sqrt{x} +	$\overline{3} = x - 3.$
$\sqrt{x+3} = x-3$	Original equation
$\left(\sqrt{x+3}\right)^2 = (x-3)^2$	Square each side.
$x + 3 = x^2 - 6x + 9$	Simplify.
$0 = x^2 - 7x + 6$	Subtract x and 3 from each side.
0 = (x-1)(x-6)	Factor.
x - 1 = 0 or $x - 6 = 0$	Zero Product Property
x = 1 $x = 6$	Solve.
$CHECK\sqrt{x+3} = x-3$	$\sqrt{x+3} = x-3$
$\sqrt{1+3} \stackrel{?}{=} 1-3$	$\sqrt{6+3} \stackrel{?}{=} 6-3$
$\sqrt{4}\stackrel{?}{=}-2$	$\sqrt{9} \stackrel{?}{=} 3$
$2 \neq -2$	$3 = 3 \checkmark$

Since x = 1 does not satisfy the original equation, x = 6 is the only solution.

Exercises

Solve each equation. Check your solution.

1. $\sqrt{a} = a$ **0.1 2.** $\sqrt{a+6} = a$ **3 3.** $2\sqrt{x} = x$ **0. 4 4.** $n = \sqrt{2 - n}$ **1 6.** $\sqrt{10-6k} + 3 = k \emptyset$ **5.** $\sqrt{-a} = a$ **0** 7. $\sqrt{y-1} = y-1$ 1, 2 8. $\sqrt{3a-2} = a$ 1, 2 **9.** $\sqrt{x+2} = x$ **2 10.** $\sqrt{2b+5} = b-5$ **10 11.** $\sqrt{3b+6} = b+2$ **-2, 1 12.** $\sqrt{4x-4} = x$ **2 13.** $r + \sqrt{2 - r} = 2$ **1, 2 14.** $\sqrt{x^2 + 10x} = x + 4$ **8 15.** $-2\sqrt{\frac{x}{8}} = 15$ Ø $17.\sqrt{2y^2-64}=v$ 16. $\sqrt{6x^2 - 4x} = x + 2$ 18. $\sqrt{3x^2 + 12x + 1} = x + 5$ $-\frac{2}{5}, 2$ -4, 38