\qquad
\qquad

10-4 Study Guide and Intervention
 Radical Equations

Radical Equations Equations containing radicals with variables in the radicand are called radical equations. These can be solved by first using the following steps.

Step 1 Isolate the radical on one side of the equation.
Step 2 Square each side of the equation to eliminate the radical.

Example 1 Solve $16=\frac{\sqrt{\boldsymbol{x}}}{2}$ for \boldsymbol{x}.

$$
\begin{aligned}
16 & =\frac{\sqrt{x}}{2} & & \text { Original equation } \\
2(16) & =2\left(\frac{\sqrt{x}}{2}\right) & & \text { Multiply each side by } 2 . \\
32 & =\sqrt{x} & & \text { Simplify. } \\
(32)^{2} & =(\sqrt{x})^{2} & & \text { Square each side. } \\
1024 & =x & & \text { Simplify. }
\end{aligned}
$$

The solution is 1024 , which checks in the original equation.

Example 2 Solve $\sqrt{4 x-7}+2=7$.

$$
\begin{aligned}
\sqrt{4 x-7}+2 & =7 & & \text { Original equation } \\
\sqrt{4 x-7}+2-2 & =7-2 & & \text { Subtract } 2 \text { from each side. } \\
\sqrt{4 x-7} & =5 & & \text { Simplify. } \\
(\sqrt{4 x-7})^{2} & =5^{2} & & \text { Square each side. } \\
4 x-7 & =25 & & \text { Simplify. } \\
4 x-7+7 & =25+7 & & \text { Add } 7 \text { to each side. } \\
4 x & =32 & & \text { Simplify. } \\
x & =8 & & \text { Divide each side by } 4 .
\end{aligned}
$$

The solution is 8 , which checks in the original equation.

Exercises

Solve each equation. Check your solution.

1. $\sqrt{a}=8 \quad 64$
2. $\sqrt{a}+6=32676$
3. $2 \sqrt{x}=816$
4. $7=\sqrt{26-n}-23$
5. $\sqrt{-a}=6-36$
6. $\sqrt{3 r^{2}}=3 \pm \sqrt{3}$
7. $2 \sqrt{3}=\sqrt{y} 12$
8. $2 \sqrt{3 a}-2=76 \frac{3}{4}$
9. $\sqrt{x-4}=640$
10. $\sqrt{2 m+3}=511$
11. $\sqrt{3 b-2}+19=249$
12. $\sqrt{4 x-1}=3 \frac{\mathbf{5}}{\mathbf{2}}$
13. $\sqrt{3 r+2}=2 \sqrt{3} \frac{10}{3}$
14. $\sqrt{\frac{x}{2}}=\frac{1}{2} \quad \frac{1}{2}$
15. $\sqrt{\frac{x}{8}}=4128$
16. $\sqrt{6 x^{2}+5 x}=2 \frac{\mathbf{1}}{\mathbf{2}},-\frac{\mathbf{4}}{\mathbf{3}}$
17. $\sqrt{\frac{x}{3}}+6=8$
18. $2 \sqrt{\frac{3 x}{5}}+3=1126 \frac{2}{3}$
\qquad
\qquad

10-4 Study Guide and Intervention
 (continued)
 Radical Equations

Extraneous Solutions To solve a radical equation with a variable on both sides, you need to square each side of the equation. Squaring each side of an equation sometimes produces extraneous solutions, or solutions that are not solutions of the original equation. Therefore, it is very important that you check each solution.

Example 1 Solve $\sqrt{\boldsymbol{x}+\mathbf{3}}=\boldsymbol{x}-\mathbf{3}$.

$$
\begin{aligned}
& \sqrt{x+3}=x-3 \quad \text { Original equation } \\
& (\sqrt{x+3})^{2}=(x-3)^{2} \quad \text { Square each side. } \\
& x+3=x^{2}-6 x+9 \quad \text { Simplify. } \\
& 0=x^{2}-7 x+6 \quad \text { Subtract } x \text { and } 3 \text { from each side. } \\
& 0=(x-1)(x-6) \quad \text { Factor. } \\
& x-1=0 \quad \text { or } \quad x-6=0 \quad \text { Zero Product Property } \\
& x=1 \quad x=6 \quad \text { Solve. } \\
& \text { CHECK } \begin{array}{rlrl}
\sqrt{x+3} & =x-3 & \sqrt{x+3} & =x-3 \\
\sqrt{1+3} & \stackrel{?}{=} 1-3 & \sqrt{6+3} & \stackrel{?}{=} 6-3 \\
\sqrt{4} & \stackrel{?}{=}-2 & \sqrt{9} & \xlongequal{2} \\
2 & \neq-2 & 3 & =3
\end{array}
\end{aligned}
$$

Since $x=1$ does not satisfy the original equation, $x=6$ is the only solution.

Exercises

Solve each equation. Check your solution.

1. $\sqrt{a}=a 0,1$
2. $\sqrt{a+6}=a 3$
3. $2 \sqrt{x}=x \mathbf{0 , 4}$
4. $n=\sqrt{2-n} 1$
5. $\sqrt{-a}=a 0$
6. $\sqrt{10-6 k}+3=k \varnothing$
7. $\sqrt{y-1}=y-1$ 1, 2
8. $\sqrt{3 a-2}=a$ 1,2
9. $\sqrt{x+2}=x 2$
10. $\sqrt{2 b+5}=b-510$
11. $\sqrt{3 b+6}=b+2-2,1$
12. $\sqrt{4 x-4}=x 2$
13. $r+\sqrt{2-r}=2$ 1, 2
14. $\sqrt{x^{2}+10 x}=x+48$
15. $-2 \sqrt{\frac{x}{8}}=15 \varnothing$
16. $\sqrt{6 x^{2}-4 x}=x+2$

$$
-\frac{2}{5}, 2
$$

17. $\sqrt{2 y^{2}-64}=y$
18. $\sqrt{3 x^{2}+12 x+1}=x+5$

8
$-4,3$

